

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF COMPUTER SCIENCE

I B.Sc. Honours MAJOR (COMPUTER SCIENCE)

W.E.F. AY 2023-24

COURSE STRUCTURE (SEMESTER-I)

Course	Total Marks	Mid. Sem.	Sem. End		Teaching Hours Per Week	Credits
LANGUAGES, MULTI DISCIPLINARY FOR ALL)	AND S	KILL E	NHANC	CEMEN	Γ COUR	SES (COMMON
 First Language: Telugu/ Hindi/ Sanskrit Second Language: English 	100 100	40 40	60 60		4 4	3 3
3. Multi Disny-1: Indian History	50		50		2	2
4. Skill Enhancement Course -1 Communication Skills			50		2	2
5. Skill Enhancement Course -2 Analytical Skills	50	-	50		2	2
TOTAL	350	80	270	1.14111	14	12
PART II - CORE S		Sc.	JOK an	ia MIINO	JK	
1. MAJOR-1 Course-1 (i) Essentials and Applications of Mathematical, Physical and Chemical Sciences.	100	40 (Mid + Activitie s) (2 0+20)	60		3	3
Lab / Practical/ Activities	-	_	-		2	1
2. MAJOR-2 Course-2 (i) Advances in Mathematical, Physical and Chemical Sciences. (ii) Chemical Sciences.	100	40 (Mid + Activitie s) (2 0+20)	60		3	3
Lab / Practical/ Activities		-	-		2	1
TOTAL		80	120		10	8
GRAND TOTAL		160	390		24	20

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF COMPUTER SCIENCE I B.Sc. Honours MAJOR (COMPUTER SCIENCE) W.E.F. AY 2023-24

COURSE STRUCTURE (SEMESTER-II)

Course		Mid. Sem.	Sem. End	Teaching Hours Per Week	Credits	
LANGUAGES, MULTI DISCIPLINARY AND SKILL ENHANCEMENT COURSES (COMMON FOR ALL)						
 First Language: Telugu/ Hindi/ Sanskrit Second Language: English 	100 100	40 40	60 60	4 4	3 3	
3. Skill Enhancement Food Adulteration	50		50	2	2	
4. Skill Enhancement Business Writing	50	-	50	2	2	
5. Multidisciplinary Indian History	50	-	50	2	2	
TOTAL	350	80	270	14	12	
PART II - CORE SUBJEO	CTS MA .Sc.	JOR ar	id MIN()R		
6. MAJOR- Course-3 Problem Solving using C	100	40	60	3	3	
Lab / Practical:	50	25	25	2	1	
7. MAJOR Course-4 Digital Logic Design	100	40	60	3	3	
Lab/Practical::	50	25	25	2	1	
8. MINOR Course-1 Problem Solving using C INTRODUCTION TO DATA SCIENCE AND R PROGRAMMING	100	40	60	3	3	
Lab/Practical::	50	25	25	2	1	
TOTAL	450	195	255	15	12	
GRAND TOTAL	750	180	470	29	24	

GATARI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF COMPUTER SCIENCE BLUE PRINT FOR MAJOR SUBJECTS

		SECTIO	N-A
		5X2=10	
I	UNIT	MARKS	CO'S
1	UNIT-1	2	CO-1
2	UNIT-2	2	CO-2
3	UNIT-3	2	CO-3
4	UNIT-4	2	CO-4
5	UNIT-5	2	CO-5
II	SECTION	N-B	
5X10=50			
6 A or B	UNIT-1	10	CO-1
7 A or B	UNIT-2	10	CO-2
8 A or B	UNIT-3	10	CO-3
9 A or B	UNIT-4	10	CO-4
10 A or B	UNIT-5	10	CO-5

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF COMPUTER SCIENCE

B.Sc., Honours in Computer Science MAJOR(THEORY)

Syllabus w.e.f 2023-24 Admitted Batch

SEME STER	COURSE	TITLE	CREDITS	HOUR S	MARKS
II	3	Problem Solving using C	3	4	100

Course Objective:

- 1. To explore basic knowledge on computers
- 2. Learn how to solve common types of computing problems.
- 3. Learn to map problems to programming features of C.
- 4. Learn to write good portable C programs.

Course Outcomes

Upon successful completion of the course, a student will be able to:

- 1. Understand the working of a digital computer and Fundamental constructs of Programming
- 2. Analyze and develop a solution to a given problem with suitable control structures
- 3. Apply the derived data types in program solutions
- 4. Use the 'C' language constructs in the right way
- 5. Apply the Dynamic Memory Management for effective memory utilization

UNIT-I

Introduction to computer and programming: Introduction, Basic block diagram and functions of various components of computer, Concepts of Hardware and software, Types of software, Compiler and interpreter, Concepts of Machine level, Assembly level and high-level programming, Flowcharts and Algorithms

Fundamentals of C: History of C, Features of C, C Tokens-variables and keywords and identifiers, constants and Data types, Rules for constructing variable names, Operators, Structure of C program, Input /output statements in C-Formatted and Unformatted I/O

UNIT-II

Control statements: Decision making statements: if, if else, else if ladder, switch statements. Loop control statements: while loop, for loop and do-while loop. Jump Control statements: break, continue and goto.

UNIT-III

Derived data types in C: Arrays: One Dimensional arrays - Declaration, Initialization and Memory representation; Two Dimensional arrays -Declaration, Initialization and Memory representation.

Strings: Declaring & Initializing string variables; String handling functions, Character handling functions

UNIT-IV

Functions: Function Prototype, definition and calling. Return statement. Nesting of functions. Categories of functions. Recursion, Parameter Passing by address & by value. Local and Global variables. **Storage classes**: automatic, external, static and register.

Pointers: Pointer data type, Pointer declaration, initialization, accessing values using pointers. Pointer arithmetic. Pointers and arrays, pointers and functions.

UNIT-V

Dynamic Memory Management: Introduction, Functions-malloc, calloc, realloc, free Structures:

Basics of structure, structure members, accessing structure members, nested structures, array of Structures, structure and functions, structures and pointers. **Unions** - Union definition; differencebetween Structures and Unions.

Text Books:

- 1. E. Balagurusamy, "Programming in ANSI C", Tata McGraw Hill, 6th Edn, ISBN-13: 978-1-25-90046-2
- 2. Herbert Schildt, —Complete Reference with C, Tata McGraw Hill, 4th Edn., ISBN- 13: 9780070411838, 2000
- 3. Computer fundamentals and programming in C, REEMA THAREJA, OXFORD UNIVERSITY PRESS

Reference Books

- 1. E Balagurusamy, COMPUTING FUNDAMENTALS & C PROGRAMMING Tata McGraw-Hill, Second Reprint 2008, ISBN 978-0-07-066909-3.
- 2. Ashok N Kamthane, Programming with ANSI and Turbo C, Pearson Edition Publ, 2002.
- 3. Henry Mullish&Huubert L.Cooper: The Spirit of C An Introduction to modern Programming, Jaico Pub. House, 1996.
- 4. Y kanithkar, let us C BPB, 13 th edition-2013, ISBN:978-8183331630,656 pages.

SUGGESTED CO-CURRICULAR ACTIVITIES & EVALUATION METHODS:

Unit 1: Activity: Quiz on computer hardware and software concepts

Evaluation Method: Objective-based quiz assessing knowledge and understanding

Unit 2: Activity: Problem-solving using Decision-Making Statements

Evaluation Method: Correctness of decision-making logic

Unit 3: Activity: Array and String Program Debugging

Evaluation Method: Identification and correction of errors in code

Unit 4: Activity: Pair Programming Exercise on Functions

Evaluation Method: Collaboration and Code Quality

Unit 5: Activity: Structured Programming Assignment

Evaluation Method: Appropriate use of structures and nested structures

II Semester Course 3: Problem Solving using C

Credits -1

List of Experiments

- 1. A. Write a program to calculate simple & compound interest
 - B. Write a C program to interchange two numbers.
- 2. Find the biggest of three numbers using C.
- 3. Write a c program to find the sum of individual digits of a positive integer.
- 4. A Fibonacci sequence is defined as follows: the first and second terms in the sequenceare 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence.
- 5. Write a c program to check whether a number is Armstrong or not.
- 6. Write a c program to generate all the prime numbers between 1 and n, where n is avalue supplied by the user.
- 7. Write a c program that implements searching of given item in given list
- 8. Write a c program that uses functions to perform the following: Addition of two matrices. Multiplication of two matrices.
- 9. Write a program for concatenation of two strings.
- 10. Write a program for length of a string with and without String Handling functions
- 11. Write a program to demonstrate Call by Value and Call by Reference mechanism
- 12. Write a Program to find GCD of Two numbers using Recursion
- 13. Write a c program to perform various operations using pointers.
- 14. Write a c program to read data of 10 employees with a structure of 1.employee id2.aadar no, 3.title, 4.joined date, 5.salary, 6.date of birth, 7.gender, 8.department.
- 15. Write a Program to demonstrate dynamic arrays using Dynamic Memory Management function

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF COMPUTER SCIENCE

B.Sc, Honours in Computer Science MAJOR(THEORY)

Syllabus w.e.f 2023-24 Admitted Batch

Digital Logic Design

SEME STER	COURSE	TITLE	CREDITS	HOURS	MARKS
II	4	Digital Logic Design	3	4	100

Course Objectives

To familiarize with the concepts of designing digital circuits.

Course Outcomes

Upon successful completion of the course, the students will be able to

- 1. Understand how to Convert numbers from one radix to another radix and performarithmeticoperations.
- 2. Simplify Boolean functions using Boolean algebra and k-maps
- 3. Design adders and subtractors circuits
- 4. Design combinational logic circuits such as decoders, encoders, multiplexers and demultiplexers.
- 5. Use flip flops to design registers and counters.

UNIT – I

Number Systems: Binary, octal, decimal, hexadecimal number systems, conversion of numbers from one radix to another radix, r's, (r-1)'s complements, signed binary numbers, addition and subtraction of unsigned and signed numbers, weighted and un weighted codes.

UNIT - II

Logic Gates and Boolean Algebra: NOT, AND, OR, universal gates, X-OR and X-NOR gates, Boolean laws and theorems, complement and dual of a logic function, canonical and standard forms, two level realization of logic functions using universal gates, minimizations of logic functions (POS and SOP) using Boolean theorems, K- map (up to four variables), don't care conditions.

UNIT – III

Combinational Logic Circuits -1: Design of half adder, full adder, half subtractor, full subtractor, ripple adders and subtractors, ripple adder / subtractor.

UNIT - IV

Combinational Logic Circuits – 2: Design of decoders, encoders, priority encoder, multiplexers, demultiplexers, higher order decoders, demultiplexers and multiplexers, realization of Boolean functions using decoders, multiplexers.

UNIT – V

Sequential Logic Circuits: Classification of sequential circuits, latch and flip-flop, RS-latch using NAND and NOR Gates, truth tables, RS, JK, T and D flip-flops, truth and excitation tables, conversion of flip- flops, flip-flops with asynchronous inputs (preset and clear).

Design of registers, shift registers, bidirectional shift registers, universal shift register, design of ripple counters, synchronous counters and variable modulus counters.

Text Books:

1. M. Morris Mano, Michael D Ciletti, "Digital Design", 5th edition, PEA.

Reference Books

- 1. Kohavi, Jha, "Switching and Finite Automata Theory", 3rd edition, Cambridge.
- 2. Leach, Malvino, Saha, "Digital Principles and Applications", 7th edition, TMH.
- 3. 3. Roth, "Fundamentals of Logic Design", 5th edition, Cengage.

SUGGESTED CO-CURRICULAR ACTIVITIES & EVALUATION METHODS:

Unit 1: Activity: JAM (Just a Minute) Session: Explaining Radix Conversion

Evaluation Method: Communication Skills and Knowledge Presentation

Unit 2: Activity: Boolean Algebra Assignment

Evaluation Method: Assignment Completion and Correctness

Unit 3: Activity: Hands-on Lab Activity: Building Adder and Subtractor Circuits

Evaluation Method: Lab Performance and Correctness of Circuit Implementation

Unit 4: Activity: Group Discussion: Applications of Decoders, Encoders, Multiplexers

Evaluation Method: Participation and Critical Thinking

Unit 5: Activity: Quiz on Flip-Flops and Register-Counter Design

Evaluation Method: Quiz Performance and Knowledge Retention

List of Experiments

The laboratory work can be done by using physical gates and necessary equipment or simulators.

Simulators: https://sourceforge.net/projects/gatesim/ or https://sourceforge.net/projects/gatesim/ or https://circuitverse.org/ or any free open-source simulator

- 1. Introduction to digital electronics lab- nomenclature of digital ICs, specifications, study of the data sheet, concept of Vcc and ground, verification of the truth tables of logic gates using TTL ICs.
- 2. Implementation of the given Boolean functions using logic gates in both SOP and POSforms
- 3. Realization of basic gates using universal gates.
- 4. Design and implementation of half and full adder circuits using logic gates.
- 5. Design and implementation of half and full subtractor circuits using logic gates.
- 6. Verification of stable tables of RS, JK, T and D flip-flops using NAND gates.
- 7. Verification of stable tables of RS, JK, T and D flip-flops using NOR gates.
- 8. Implementation and verification of Decoder and encoder using logic gates.
- 9. Implementation of 4X1 MUX and DeMUX using logic gates.
- 10. Implementation of 8X1 MUX using suitable lower order MUX.
- 11. Implementation of 7-segment decoder circuit.
- 12. Implementation of 4-bit parallel adder.
- 13. Design and verification of 4-bit synchronous counter.
- 14. Design and verification of 4-bit asynchronous counter.

GAYATRI VIDYA PARISHAD COLLEGE FOR DEGREE AND PG COURSES(A) DEPARTMENT OF COMPUTER SCIENCE B.Sc., Honours in Computer Science MAJOR COURSE

BLUE PRINT FOR MAJOR SUBJECTS

	SECTION-A				
5X2=10					
I	UNIT	MARKS	CO'S		
1	UNIT-1	2	CO-1		
2	UNIT-2	2	CO-2		
3	UNIT-3	2	CO-3		
4	UNIT-4	2	CO-4		
5	UNIT-5	2	CO-5		
II SECTION-B					
5X10=50					
6 A or B	UNIT-1	10	CO-1		
7 A or B	UNIT-2	10	CO-2		
8 A or B	UNIT-3	10	CO-3		
9 A or B	UNIT-4	10	CO-4		
10 A or B	UNIT-5	10	CO-5		